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The BKZ clagtic Auid theory is vaed 1o corvelate experimental results obtained in binxial strain

and stemdy simple shear.

wcellent agreement is obtained between theary and =xperimeni.

With n heudatic potential function involving three material properties,

In the special case where one of

the material properiies is dominact, the behavior in steady simple shear is caleulated from dynamie
measurements in the infinitesimal mange and is compared with actual data.
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1. Introduction

In a recemt paper [1],! excellent agreement was
shown between experimental results and predictions
of the BKZ elastic fluid theory [2]. This theory in-
volves a potential function, [, but leaves it unapeci-
fied. For a given material, a knowledge of the results
of a sufficient number of biaxial stress-relaxation ex-
periments will enable one to predict with the BKZ
theory the stress response to any other deformation
history. However, if one knew a specific functional
Form E’)y which € could be closely represented, then
one would be able to correlate the behavipr of differ-
ent materials and different strain histories from the
results of only a few experiments.

Encouraged by these results [1], I constructed a
form of &7 with which the BKZ elastic fluid theory
could quantitatively descnibe biaxal strain at large
deformation, biaxial creep, and simple extension of
vulcamized rubbers. This form of UV involves three
matenal pm&:em In simple shear it can gquaoti-
tativel et non-Newtonian hehavior, incloding
notmal siresses. The ratio of the shearing stress to
the rate of shear depends on the rate of shear in such
a4 way as 1o describe either shear thinning or shear
thickening behavior or both, depending on the relative
magnitude of the material properties. In the special
case where one material property is dominant, one
may use dynamic data 1aken at infinitesimal strains
to predict the dependence of viscosity and normal
stressea on rate of shear. This is presented in section
4 of this paper and the agreement is excellent.

I want to emphasize that the form of U presented
here is heuristic.  The purpose of this paper is to show
that with a relabdvely simple form of I/, one may use
the BKZ elastic fluid o describe very well the behavior
of materials which can be considered isctropic and
incompressible.

* Figuren im brackets indlesis tbe Iaranars reforauoss o the and of Lis paper,

2. Theoretical Considerations

The BKZ elastic fluid i a fuid with an elastic poten-
tial. The effect of the configuration at time 7 <t on
the stress at time ¢ is equivalent to the effect of a stored
elastic energy with the configuration at time 7 as the
preferred conbiguration. The effect depends on the
amount of Hme elapsed hetween 7 and ¢. The stress
at ime ¢ is the sum of contributions from all past times.
For an extensive description of the theory, we refer the
reader to the initial papers [2] and [3].

A particular motion of the material may be specified
in terms of the Cartesian coordinates x; of each particle
at each ime. Let X, Xz, Xz be the position eoordinates

of the particles in a reference configuration. Then,
a mation is given by a set of functions

xi=xd X, 1) Lik=1,23 2.1)
At time 1, (2.1) becomes

xi=xdXp, 7 i. k=1,2, 34 2.2)

If we eliminate Xi, Xa, X; between (2.1) and (2.2)
we may write

xifl=xixdr), t, 7) i, hk=1,2.3

where x4ir) and xiy) are the position coordinates at
time ¢ and T respectively of the same particle. The
relative deformation gradients xudt, v) are defined by

dxds)

Xiglf, 7)™ EY {f}

The left Cauchy-Green tensor cylt, 1) 15 then

cld, 7Y = xi, Tixgdt, T)
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where repeated indices indicate summation over the
values 1, 2, 3.
The principal invanants of cie, T} are

hit, n=83+8+48
Lie, 1) = GL3+ 308+ G
Ife, 7 =338
where [T=MA}i, ) are the principal valuez of eylt, 1)
and A, is the stretch ratio in the x; direction.
Assuming incompressibility, we have I, ©=1,

and the constitutive equations for the BKZ elastic
fluid become [4]

au[t}——pﬂu+2f {g}, cylt, Th— U cu‘[.t r}] dr (2.3)

where oy are the componentzs of the stress tensor,
p is a hydrostatic pressure, {7 is a function of I, I+,
and £—r

U= U{-Lu! T}r Iﬂ{"l TL ;_T}?

and ¢'{t, 7) are the components of the inverse of the

matrix [loft. 7). We may describe an isochorie ho-

mogeneons biaxial strain history by writing for (2.1}
Al = (R,

1) = hal )Xz
Iafﬂ=hal:t}xa=ﬁxa-

The matrix of the left Cauchy-Green tensor i, 1)
becomes

AY(¢)

) 0
A
late, Dll=| © h%{:'; 0
AT
0 0 Bonn

and

A?{t}+h§[:} AHTIME(T)
AT M M

M) | M) | MRKE),

X0 T Xk T AN

Iit,n= (2.4)

fodi, 7)= (2.5}

From (2.3), (2.4), and (2.5) we get

ﬂ'1|{I} — 0'3:3{3}

2 J" [hﬁr}_hﬁr}hﬁﬂ] [aU L
- Latn T XA Laf, T Ade) ol

dr (2.6)

and

ot —agllt)
= f hﬁ:} hzﬁ"}.\ih‘} [E ﬂﬂf
_2-,- [’“ﬂﬂ Xionkn) 156 N ok dr. {2.7)

In the case of a single step stress-relaxation experi-

ment where A{r)=1 for times T smaller than zero and
AdTI= M) = ks for times ¢, 7 greater than zero, (2.6)
vields

Gult) = oalt) _ (_ L
1 ah el
Athg

{2.8)

b -
1

where

W=l I, ) = f " U, h, D,
: (2.9)

E=t—r,

and

1
A=At At

1,1
I’_E+A=+Fp

Similariy (2.5} becomes
T ) —asald)

=2 +M3
i v
M

(2.1

o)
' al.

Superficially. expressions (2.8) and (2.10% appear to
be the same as the relations given by Rivlin and Saun-
ders [5]. However ¥, here, depends on time as well
as atrain and iz designed so that (2,10} gives the siress
during stress relaxation. On the other hand, the B
of Rivlin and Saunders depends only on strain.

In the case of simple shear, we introduce an orthog-
onal zet of coordinates as shown in figure 1, where 1
is the direction of motion of & particle and x; is the
direction of shear. In the case of a ateady shearing
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Y,

l

X3

FicumE 1. General coordingte axes for description of flow.

motion with constant rate of shear, ¥, (2.1) reads
Zal ) =27} Hie —THrxdT)
gl =xAT)

A8 = 2al7)

Thus,
1+4%e—=7P2 Hi—7) 0
Jee, ol=] #e—m 1 0
Qd 0 1
and
L —Hi—7} O
IlEﬂi“" f}"s —Hr—r) 1+43(t—7 D

Substituting in equation (2.3) with t—r=§, one gets
[ (aU au] .
= _-+._._
T zfn {af. ARG

Lit, 1= £)=kit, t— H =3+ 3¢

2.11)

where

and

U=Uh &, &

- i LM |
o= "+2.L {Ml{Hf&} o df  (2.12)

ﬂ'gg=—p+2J;m [-g%—giu-}*ﬁ} d 213

—_ LA
T P+2L {aﬂ olz

These relations hold independently of the form of [f.

dt. {2.149)

3. Experimental Procadure

From the theoretical considerations of the previous
section, we see that we may determine 4%/af, and
dF fof: as funetions of 1y, J», and ¢ {from data taken in
gingle step atress-relaxation experiments in biaxial
sttain. For vulecanized rubbers we may regacd the
long time isochrones in creep to within a good approx-
mation as isochrones of single step stress relaxation.
This is true for a material only if the deformation at
constant load remains almost constant for long times,
although not necegsarily to infinite time. For this
reason we elected to do our experiments on vulcanized
butyl rubber. The experiments were carried out
using a test piece in the form of a square sheet having
sides of B cm and & thickness of about 0.07 cm. The
test piece was cut and marked in a fashion described
by Rivlin and Saunders [5]. One sqnare surface of
the sheet was marked in ink with two sets of four
parallel straight lines so as to form a square grid with
1 cm spacings. In drawing the outer lines of the grid,

great care was taken that they be straight and form a
In fgure 2 is shown part of the ap-

perfect square.

. Ficure 2. Schemadic diggrom for the binzial exiension experinenis.
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paratus with the sample 5. As can be seen from the
figure, the sample was stretched in the A-B and C-D
directions with the aid of strings. One end of each
string was tied to a lug of the sample and the other
end was attached te a weight or 1o a turmbuckle. The
strings were made from unspun fibers of Mylar. For
the study of the variation of 38 af, and aFafs with
respect to time, the two sets of the three middle lugs
in the A and C directions were tied to strings support-
ing weights. The other 14 lugs were tied to strings
in which tension was controlled with the tarnbuckles,
which eould be adjusted to keep the ink lines on the
sample straight and parallel. With the aid of a two-
way traveling microscope, whose axes of travel were
zet parallel to the stretch directions, we could check
the uniformity of siretch and measure the extensions.

In our other sets of biaxial experiments, we loaded
the sample by fiest stretching it a predetermined
amount in the D=L direction and then applying weights
in the A=B direction. This was done in order 10 avoid
difficulties due to the history of loading. In these
experiments, only the three middle lugs in the A diree-
tion carried supporting weights. The strings atcached
to the other lugs were adjusted to keep the lines
straight and parallel to the streteh divections. The
firal readings were taken after 18 hr from the time of
loading, After each measurement the material was
allowed to relax for 24 to 48 hr before another loading
was started. Thus, the values that we obtained can
be considered as isochronal values of stress relaxation
ar 18 hr.

In order to be able to compare with experiment the
predictions of our theory for simple shear Hows, we
petformed dynamie and constant rate of shear meas-
urements on solutions of polyisobutylene B-140 in
Mentor 28 oil. Two concentrations were used. They
shall be designated as 10 percent and 5 percent. We
do not know the actual concentration accurately, be-
canse we lost an unknown amount of solvent while
preparing what was to be the 10 percent solution.
We do koow that the ratio of the two concentrations
is two to sne. The dynamic data at very small defor-
mations were obtained through the cooperation of
R. W. Penn, using a torsion pendulum ar the W. K.
Grace Laboratories. The torsion pendulum is essen.
tially the same as the one described by Mortison,
Zapas, and DeWint [6] The data on viscosity as a
function of rate of shear were obtained in a capillary
viscometer.

4, Experimantol Resvlts and Discussion

The purpose of this paper is to show that with a
relatively simple form of the potential function Y,
the BKZ elastic Aluid can be nsed to correlate different
typez of behavior of elastomeric materials. The
heuristic form of the potential function { which 1
shall use here involves three material properties aff),
Bit), and of). These material properties are positive
monotonically decreasing functions of time. The
form of € is given by the following expression:

—U=% (h— 34458 In (M)
2 ]
ot I-'I_i_]-E ] _
248 — ) In (f_._,+15)+“'”‘ 3 4l
where
rdatt) o _ a8l , deolt}
=g B =g amd =
From equations (2.9 and (4.1) we get
oW_ . 458 | 2MB—o)
af, AN ST AT T 42
aW__458  248—¢)
il: TLi+hL+3  h+l5 @.3)

where it is understood ¥, &, B, and ¢ are functions of
time.

In a pure shear single step stress-relaxation experi-
ment with A»=1, and §,=Jz, we get from &y (2.8)

oult) — amlé) @E_; L
-l _2(6‘!.+ﬂh
1 ¥

98
20 +3

~2{at,-3)+ + c] 4.4)

Since aif) is taken lo be a positive monotonically de-
creasing funclion of time, or zero, eq [4.4) says that
ault) — oraalt)
1

h?_h_i
one should get either a curve which is concave up-
ward or a straight line. In the case of a straight line
the slope is equal to 188, the intercept, 2c, and o
equals zero.

In figure 3 we show the data of Rivlin and Saunders
[3] on pure shear for vulcanized natural rubber. In

this figure we plotted @— aff) —3} versus 1
3 ( A ___) 2043
1 hf

for =0 and =006, As can be seen for the case
where =1, the curve is concave upwards. Here
a=10.06 was found by trial and error. Actually, if
there is a well defined minimum, one could obtain a
by following the procedure presented in a previous
paper [3]. 5o it is evident that by using the relation
{4.4] one could get the three material properties from
pure shear experiments.

In Ggure 4 we present a similar check of the ade-
quacy of the assumed form of I/ by plotting

al constant [ versus

if one plots ﬁ,
L

E'w—a[f. —3) versus IIT—;%
1 2

2 (Af—h—;ﬁ)
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FicuRE 3. Puore shear data of Rivlin and Saanders on vafeanized
naturad rahber.
Opan cfrches, omD. The abscimsn is givas o ki por em®,

using data obtained on vulecanized butyl rubber in
biaxial and simple extension deformations as de-
scribed in the previous section. For butyl rubber, the
value of ot) is small and estimated to be Q.015.  Since
# and ¢ are equal, as determined from the pure shear
data, in a plot of this type the experimental points
should fall in a straight line. Considering experimen-
tal dificulties and uncertainties, the agreement is
excellent.

Tanre 1. Hiacial ereep of valcanized bueyd rublier
Tome 2 i L—'x e | 2o
Haura Dymuryfom® Dyengiem®
3 51043 51030 ZI5 =010
Fo] EREF-] 31135 (K] A7
ERNET 1191 L M
W Zil60 1156 10 b
i 1177 1007 1™ A7
w0 31100 31191 ETé BT
nr F1211 WY LT a0
Tod 3033 3k 163 K]

In the course of our experiments in biaxial deforma-
tion, in a different set of measurements we ohserved
a negative value of dWF/foly at very small extensions,
while at higher extensions o#F/of: was positive. This
was observed in three samples with different degrees
of vuleanization. For a further study of this peculi-
atity we selected a relatively high cross-linked speci-
men of butyl rubber and we studied its biaxial creep
behavior at small deformations. In table 1 we show
the caleulated values of sl and aFfaf. as fune-
tions of I;, Iy, and Hme. This table showa large varia-
tionz in AF[al; for small changes in [y and Iz. A plot
of oFfeli+oWF{ol: versus the logarithm of time is
shown in figure 5. We aee that even in greatly ex-
panded scale for aF/af; + 3% al; the pointa fall in a
straight line. Moreover, after 1530 hr the data stll

of sufcamized Butrl rubber.

Fr:uBE 4. Bmmf extension datn
Thae abaciss b ghvan in (dyites/omPIL0,

:% raf—
4
a?‘ 17—
8 N
T | | |
[ z a
Log 1, howrs]

FicuRe & Biaxiol cresp daie on vafcanized buy! rubber,

did not indicate any suggestions of leveling off. This
shows that we cannot neglect the behavior with re-
spect to time. From single step stress- -relaxation
expetiments in simple extension in vulvanized rubbers,
we observed that 8 decays with time much faster than
& From ($.3) we can see that aF{al; will be negative
when 8 is larger than 1.6c. One can see, at least
qua.htauvel',r, that what zeemed to be a adoxical
Evﬁrsmn in sign for 3 fAL: is predlcmhf:l-[mm eq

4.1. Steady Simple Shearing Flow
We can substitute eq (4.1} into eq (2.11} to get

on=—2 [ fatere+s Bl + o) i

{4 3}
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Since the viscosity %(}) is defined to be the ratio of
e to ¥, eq (4.5} can be written

= [ [oenen+ L&),
nr=-2 [ la@ye+g +2ﬁ,+c{ﬂ}£d§+{w

By considering special cases for which the dominant
term is that containing o'(£), A'(£). or ¢'{£). one can
see that {4.6) could predict a viscosity independent of
rate of shear, or viscosities as observed in shear thin-
ning ot shear thickening materials,

In figure & we show schematically the type of be-
havior predicted from eq (4.6). For the sake of
gimplicity we can write

HYV=nd V) +nel¥)+7c 4.7
where
M) ==2 L o ey e 4.72)
mﬁfl=—2r -'G—gg—df 4.7}
L =R
9
ne=—2 _‘; c¥df (4.7c)

We observe that in the case where nJf¥)=n4gd¥=10
one gels a viscosity independent of rate of shear.
When only n.{¥)=0, one gets a behavior shown in
curve II of figure 6. Curves III and 1¥ represent the
cases where 7.iv), nA¥), and 7. all comribute to the
viscosity. Naturally, curve IV shows the case where
) is the dominant quantity.

1V

Lo6 T(¥)

LOG 4

FIGURE . Schematic represemtation of forms of steady sfegr
niscasity corves which can be predicted fry g (426)

4.2, Comparison of Steady Simple Shearing Flow
With Macwrements at Infinltesimal Deformotions

For a simple shear deformation, which is specified
in terms of a single parameter, say ¥=-y(r} {2.2) may
be written

xir =X, + {7
Xz{T}ZXQ

xa1)=Xs.

(4.8)

To represent single step siress relaxation, we take
Hri=10 for 7=<0 and yr)=y=constant for >0,

and we get
1+ ¥
Fesll=|| ¥ 1
1

0 0
{4.9)
1 —Y
legll=F¥ 1+7°
0 0 1

where [, =L=3++%
and (4.9}, we obtain

From (2.3), (2.9}, (4.2). (4.3},

U|££}=2T[TEM1}+M+ mh}

T+ (4.10)

o)

The Limit of ¥ for vanishing ¥ gives us the relaxa-

tion function, (), for infnitesimal delormations;
Glry=28(e) + 2d).

From the general relation of linear viscoelasticity [7]
between periodic and steady-state functions

4.11)

) + b "tew) = it J; " Git)ewidt,
we can express %'(o) in terms of S¢) and cit) as

o) = _[ " {200)+ 200} cos ndt. (4.12)

Integrating (4.6} by parts we get

. = . G — 244
ni=2 [~ [aaipyrer+ BEGIEO ) «
@.13)

Several interesting observations can be drawn re-
garding the behavior of a material which can be de-
sczibed by a potential function U of the form of (4.1)
by comparing (4.12) and (4.13). Firsr, it is obvious
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that in general 9i¥) cannot be predicted from measure-
ments of B'(w), since the term in ot) does not show
up in 7'(w) at all. Also, Bit) and ot} cannot be sepa-
rated by measurements of n'{w). However, if we
encountet a material for which either 8 or ¢ is the
dominant term in (4.13) and (4.9 then in principle
7¥) can be caleulated from o'(w). M ¢ is the dominant
term, we will have a situation in which %% i= inde-
pendent of rate of shear, but n'iw) may vary with fre-
quency and normal stress effects may be dbserved in
steady shearing How. If 8 is dominant, both 7'{w)
and i} will vary with w or ¥.

For many materiale ot} is negligible, but ordinarily
both ()} and {t} contribute to fi¥), with 8t} contribut-
ing the dominant term within experimentally acces-
gible rates of shear. However, at very high rates of
shear, any nonzero ¢ must become dominant. For
the range of rates of shear for which

J' = 9B(E) (2—2¥°€7)
¢ (FF2EP

we may utilize n'{w) to evaluate S{t) and caleulate a
lower bound for the measured ni¥). The calculated
7} should be in close agreemeni with that measured
at low values of 4, but would fall helow the measured
values at high rates of shear.

For the actual comparison of the two measared func-
tions 1'(w) and wi¥), it iz better te formulate our ex-
pressions in terms of relaxation spectra corresponding
to Bl¢) and o(¢) entirely analogons to the gpectrum repre-
sentation of G{f). The relaxation spectrum F{r) may
be defined by [7]:

déﬁ-fc{é‘}ﬂ’f

Gley= f Firyetrdr

and may be expressed as the sum of two terms Falr)
and FA7) defined by

28(1)= f " Fone-tdr
¢ {4.14)

2e(t)= f " Fds)e-thdr.
L1}

In terms of (4.14} we have

6'iw)= L‘" {Fgtn) + Felrl}wtrdr

14 %y
- = { Fat)+ Foir)}vdr
7w L 1+ ewiés?

{4.15)

{4.16)

and in the case where oft) & 0 from eq (4.6)
xe~Fdx

= S
= J& |FE{T}T J; 1+§?‘T=x* ]

(.17}

—%
—z
£ E)
5 :
i ]
K] - ¥
= g
g
—a
] E:
Ln-g[u,m:"]
FrouRe 7. Ihmamic data on 5 percert solution of B—140 in Merzor
0 odl. Swlkd clrelow epresent the values cobeulutad fren das given in table 1
Tapk 2. Relavarion spectrom for 5 percent soluiien of polyvize-
burylene H— 140 in Mentor 28 a2 25 °C
t Hin
T on "_
152 1
0 i)
3 12
1 o
o5 L0
| 45
LiE] 410
al A

We caleulated Hir)=rF{r) from measurements of
#'iw) and '{w) on the five percent solution of B—140
by an iterative method which will be described in
ancther paper. In figure 7 we show the dynamic
rigidity and viscosity as a function of frequency.
The black points represent points calculated from
Hi7) as obtained by our iterative method and tabu-
lated in table 2. The agreement indicates that we
have a good representation within the range of meas-
urements. In figure § we show the viscosity at steady
shearing flow as a function of rate of shear, with the
open circles representing values calewlated from eq
{4.17) assuming that the contribution of the integral
of Foryr 1= negligihle. The agreement beiween ex-
perimental and caloulated values is excellent.

The same arguments can be used for the deter-
mination of the normal siress differences o, —or,
=, and ap—o (where Jo=o, +oy+ow) as can
be seen from eqs (2.12) 10{2.14). An intereshing result

. _ . Ta—dT
is that the limiting value of the ratio UE ;9‘ at emall
11—

rates of shear is 0.46 in the case where 8 is the domi-
nant term. This compares very well with the value
of 0.4 reported by Markovitz [8] for a 5.39 percent
solution of polyisobutylene in cetane.
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Ficure &  Dwnamic viscosity ard seeady shear viscosicy data an
§ percent solution of B- 180 in Mentor 28 oif.
Sedld checlen wre ibe colopluimd valmes.

In conclusion, we should emphasize that all these
derivations were obtained with the assumption of
incompressibility. In reality a¥/af, and oW fafs de-
pend alao on f, the influence of which can not be
evaluated from the experiments reported above,

! thank B. Bernstein, E. A. Kearsley, and R. 5.
Marvin for their valuable discussions during the
preparation of this manruscript.
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